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INTRODUCTION 

Over the past three years, researchers at the University of Washington have 

been developing a multistatic radar system that uses commercial FM radio broadcasts to 

detect plasma waves in the ionosphere. This research has shown that the short 

autocorrelation times of FM broadcasts make it possible to achieve good range and 

doppler resolution despite the continuos operation of the transmitter However, because of 

the great distances of ionospheric targets (>600 km) most research has focused on a 

multistatic system consisting of a reference receiver and another receiver isolated from the 

direct broadcast signal by the Cascade Mountains. Although some research was done on a 

bistatic system, it was quickly seen that the clutter limited dynamic range would make the 

observation of plasma waves very difficult if not impossible. This analysis though did not 

rule out the detection of aircraft at distances close to the receiver-transmitter baseline. In 

fact, the first detection using FM broadcasts was that of a bistatic detection of an aircraft 

displaced 1.5 km from the baseline [1]. 

The primary problem with the detection of aircraft with the bistatic radar is 

discriminating the scattered signal(s) against the strong direct broadcast. This is similar to 

the detection of weak signals against strong interfering white noise sources as encountered 

in sonar and radar environments with strong ECM (electronic countermeasures). The 

optimal solution is known to be matched filtering combined with spatial filtering technique 

such as adaptive beamforming [2]. However, because the signal we are seeking to identify 

is not known before reception it is impossible to use the traditional matched filtering 

technique. Instead, we compute the self-ambiguity function of the signal. This is still 

optimal if the signal itself is white noise, but it requires that the scattered signal compete 

with the clutter of the direct signal. A performance analysis of this technique is done for 

the case of white noise which is then phenomenologically extended to FM radio 



broadcasts. The key results of this analysis are that detection of aircraft will probably not 

be possible at FM broadcast bandwidths. However, the theory developed for white noise 

processes shows that a spread spectrum radar which uses 10-20 Mhz of bandwidth 

could be developed with a range radius of 4 - 5 km from the receiver. Although not 

interesting by itself, a network of the receivers could be formed whose presence would be 

impossible to detect since they would be completely passive. Also, because the spectral 

density of the transmitted signal would be close to the noise floor, it would even be 

difficult to determine the radar's presence. This would allow an active transmitter to be 

used. 



CHAPTER 1: SYSTEM OVERVIEW AND REQUIREMENTS 

As with any system analysis problem, before we begin the detailed analysis 

of the capabilities of the radar it is necessary to ensure that the reader understand at the 

broad system(s) level the radar operation. A radar is a system which generally consists of 

a transmitter, receiver, antenna(s), and either analog or digital equipment which 

implements a signal processing routine on the raw receiver data [3]. The purpose of the 

signal processing routine is to use the principles of electromagnetic theory along with that 

of statistics to detect and determine characteristics such as range, direction, or velocity of 

a target(s). 

The major differences between a system which uses commercial FM radio 

broadcasts and that of a conventional radar come from the operator not controlling the 

transmitted waveform and from the separation of the receiver and transmitter. The 

inability to control the waveform requires that the signal must be modeled in order to 

analyze its performance. We will be modeling the transmitted signal as white gaussian 

noise which is primarily done for analytical convenience, but we will also show how the 

model can be extended to colored gaussian noise which more accurately describes the FM 

broadcast. The separation of the receiver and transmitter means that the geometry and 

location of the receivers will be very important. It also has the effect that the receiver 

topology can be simplified to direct conversion. 

1.1 RECEIVER TOPOLOGY 

The direct conversion receiver can be used in this radar since there is no 

transmitter sharing the same antenna as the receiver. Hence, the traditional interference 

problem which requires that the signal first be mixed with an intermediate frequency is not 

required. Thus, the receiver topology for this radar is given by figure 1.1 [3]: 



Antenna 

sin(wt) 

Figure 1.1: Direct Conversion Receiver 

1.2 BASIC SIGNAL PROCESSING ALGORITHM 

The optimal linear detection algorithm in radar and also for other 

applications which must detect signals in noise is matched filtering [2]. In the time 

domain, because the impulse response of the matched filter is the time reversed conjugate 

of the signal, matched filtering is equivalent to correlating the received signal with the 

signal that was transmitted. This intuitively makes sense because we would expect the 

algorithm to compare the transmitted signal to what was transmitted. The matched 

filtering allows us to quantitatively determine the degree of correlation between the signal 

that was transmitted and what has been received and it does this in the optimal sense of 

maximizing the SNR (signal to noise ratio). 

The bistatic FM radar uses just one receiver which records a vector sum of 

both the direct and the scattered signal as shown in figure 1.3. To be able to record both 

signals simultaneously requires sufficient dynamic range. This is primarily determined by 

the number of bits of the analog to digital converter. The matched filtering is implemented 

by correlating the received signal with itself. There will be a large spike in the ambiguity 

function at zero delay and doppler shift because the signal perfectly matches itself. 



Targets must now compete with the noise plus the clutter of the direct signal. 

Characterizing the clutter of the direct signal is the main problem that must be understood 

to determine the sensitivity of the radar. 

1.3 RECEIVER GEOMETRY 

The location of the receivers is important in understanding the operation of 

the radar. Several options are open to the designer each of which offers its own 

advantages and problems. 

Target 

RX1 

Figure 1.2: Multistatic Receiver Geometry. The direct signal is received at RX1 and 
correlated with the scattered signal received at RX2. The direct signal is blocked by the 
Cascade Mountains which allows RX2 to receive only the scattered signal. 

The first design is given in figure 1.2. This is the multistatic radar which is examined 

extensively in Paul Hall's thesis [4]. It has the advantage that the mountain range blocks 

the direct signal to the second receiver. This alleviates the dynamic range and some of the 

clutter problems which are present in the bistatic geometry. Unfortunately, this method of 

implementation requires suitable geographic features which limits its use to a few select 

regions of the world.   It also has the problem that a relatively high speed data link be 



established between the two receivers.    Finally, this geometry has been extensively 

investigated by researchers at the University of Washington. 

Bistatic Single Receiver Bistatic Multi-Receiver 

Figure 1.3: Illustration of Bistatic Geometry. In both cases, the receivers must receive a 
vector sum of the direct and scattered signals. 

Figure 1.3 shows the single receiver bistatic radar. It requires the least amount of 

hardware with only a single receiver. However, the simplicity in hardware components is 

offset by the requirement to distinguish targets against the strong direct signal whose self 

clutter will obscure targets. 

This problem may be partially dealt with by using two directional antennas 

one pointed at the receiver and the other in the direction of the target. This can also be be 

done by using two or more closely spaced receivers (within several wavelengths of each 

other). It is then possible to use the phase differences due to the difference in the path 

lengths to cancel the direct signal which can be implemented through the spatial filtering 

technique called adaptive beamforming. Of course this requires two or more receivers to 

be built, as well as an increase in the computation burden which are the systems main 

drawbacks. 



be built, as well as an increase in the computation burden which are the systems main 

drawbacks. 

1.4 SENSITIVITY REQUIREMENTS 

The sensitivity requirements can be determined from the bistatic radar 

equation. This is given by (ignoring polarization or impedance mismatch) [5] : 

A2Gt(i)Gr(-d)abi(öJ) 

where Pr, Pt are the power at the receiver and transmitter respectively. The two gain 

factors, Gt(f) - transmitter antenna gain and Gr(<5) - receiver antenna gain, are dependent 

upon direction patterns which is the reason for the vector arguments. The bistatic cross 

section, crbi(6,i) is the parameter determined by the target and is also dependent upon 

direction. The factor X2 is the wavelength of the carrier frequency and results from the 

receiver cross section. The final two factors, Ri and R2 are defined in the figure 1.4. 

Similarly, the received power of the direct signal can be written as: 

X2Gt(V)Gr{-n 
(4TT)

2
L

2 pr=   :;_r:;^ a-*) 

where the prime indicates the directions will often be different from the scattered signal. 

The two quantities which are pertinent to the problem of interest is the 

ratio of 1.1 to 1.2, and the ratio of 1.1 to noise power. First, we write the ratio of the 

received power of the scattered signal relative to the direct signal (1.1 to 1.2): 

P^_   2     poJ,Ö)L2 Gt{i)Gr{Ö) 
Pr -

a   ~  (4x)R2R2
2 

P~ Gt(hGr(6<) K- } 



Transmitter Receiver 

Figure 1.4: The bistatic triangle. 

We will call this quantity the scattered to direct ratio (SDR). It will often be the case that 

we will be operating with Pr » N where N is the noise power. Thus, it is useful to 

determine the performance of the system for a minimum SDR and specific values of L, p, 

and abj(ö,i). The requirements on Ri and R2 are then that they satisfy the law of cosines 

with L being the third side of the triangle as shown in figure 1.3, and that they satisfy 

equation 1.3 for the given values. It is then easy to show R2 must obey the following 

quartic equation with 0 being defined as indicated in figure 1.4: 

£\ T2 
A 7 ■>   -,    <?hiO-,d)L 

Rt - 2LRl cos(0) + L2R? -   b'\ \     = 0 
~ (4*-)«mln 

(1.4) 

Notice that for small R2 that 1.4 reduces to the familiar equation of a circle in polar 

coordinates.   This is one possible equation that can be used to describe the Ovals of 



Cassini that result, and other solutions that use a different origin or coordinate system 

exist [2]. This equation although difficult to solve analytically can easily be plotted with 

65 dB 

Figure 1.5: Plot of ovals of Cassini about the receiver with L = 20 Km, crbi(p,i)= 40 m , 

p = 1, and a^n as given on the curves. 
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the implicit plot function of Maple. The result for various values of or^in is shown in 

figure 1.5. This indicates that we must be capable of detecting scatter -55 dB below the 

transmitter signal to be able to detect a target with a cross section the size of an 

Figure 1.6: Ovals of Cassini for indicated baseline lengths and a^n = -65 dB, p-1 

and <jbi{p,i) = 40 m2 
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airliner, 40 m2, at 1 km from the receiver without directional antennas. However, a similar 

mirror image of the ovals occur about the transmitter which means it is possible to detect a 

target 21 km away. It is also important to see as shown in figure 1.6 that the ovals 

described by equation 1.4 are quite close for varied baseline lengths. The reason for this is 

that both the scattered signal and the direct signal depend upon the baseline length. 

Hence, when the power ratio is taken the change due to the baseline length changing is 

typically small. 

Next, we use the model that the noise is white and hence its power can be 

written as [5]: 

N = kBTfB (1.4) 

kB = 1.38 x 10"23 J/K is Boltzman's constant, T is the noise temperature of the receiver 

plus the cosmic background radiation, and fB is the bandwidth of the receiver. This means 

that the ratio of the scattered signal to the noise (SNR) is given by: 

Prs _A2Gt(i)Gr(Ö)ab,(i,ö)Pl 

N ^nfR^kBTfB 

Normally T is taken close to the effective cosmic temperature which can obtain a 

maximum of 10,000 K, however, in this case it was found the measured noise power was 

closer to -60 dBm because of the loud radio environment in the Seattle area due to factors 

such as FM sidebands [1]. This means that T should be taken as 2.89 x 108 K. However, 

this still only results in an SNR of about -25.5 dB for a baseline length of 80 km and 100 

kW transmitter power which is much higher than the corresponding SDR. Indeed, if we 

can handle the SDR then it will be possible to easily deal with the noise at almost all 

baseline lengths of interest. 
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We have overlooked the improvement in gain that may be possible with 

directional antennas/adaptive beamforming and the effect of physical clutter. We will 

examine those effects as degradation or improvement factors in the signal processing. 

This means that problem that we must pursue is determining if it is possible to achieve 

through signal processing the detection of a target whose SDR is near -60 dB if we wish 

to pursue passive radar nets and even smaller if we wish for a passive radar to have the 

range of a short range surveillance radar. It is obvious that pursuit of passive radar nets 

will be easier to pursue. Thus, a SDR of about -60 dB is what we should be looking for in 

the analysis that follows. 



CHAPTER 2: THE SCATTERING MODEL AND THE AMBIGUITY FUNCTION 

This chapter discusses the scattering models that will be used in this thesis 

and their relation to the ambiguity function. The emphasis is on developing the correlation 

properties of the fields which are incident upon the receiver, and not upon detailed analysis 

of scattering cross sections. These properties will then be used to describe the output of 

the ambiguity function. 

2.1 THE FM RADIO BROADCAST 

The FM Radio broadcast uses voice and music signals to modulate the 

carrier signal. This is done through the use of instantaneous frequency. Suppose the voice 

and music signal is given by a(t) and that the carrier frequency is given by f0. Then the 

modulation for a monophonic radio would be given by [6]: 

t 

v(t) = cos(2rf0t + K$a(t')dt' + eo) (2.1) 
-00 

where K is a constant called the frequency sensitivity which is used to spread the signal out 

over the given bandwidth. Now differentiating the argument of the cosine gives us the 

instantaneous frequency which yields: 

Thus the instantaneous frequency is indeed modulated by the voice or music signal. Now 

real FM radio broadcasts are done in stereo so that a(t) is replaced by a multiplexed 

version of the sum and difference of the left and right speaker channels [6]. 
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However, for the purposes of this thesis the importance of the FM radio 

modulation is that the transmitted signal can be expressed as a modulated time-harmonic 

wave as follows: 

v(0 = Re{w(0«p(/2^oO} 

u(t) = exp(j[KJa(t')dt'+0o]) (2.3) 
-co 

The modulation function, u(t), in the following analysis will be assumed to be a Gaussian 

random process with a Gaussian autocorrelation function. This assumption may not be 

valid in all cases, however, experimental evidence presented by Hall [4] suggests it can be 

made. 

2.2 SCATTERING MODELS 

We describe two scattering models. The first is the simple model which 

assumes one target. The second model will include multiple targets and can be extended 

to distributed targets. 

First, we start by considering the single target model. We know the field at 

the transmitting antenna is given by equation 2.3 which means that we can solve for the 

harmonic amplitude terms at zero range: 

1   °° 
£(0,t) = — j £(0, co) exp(jaX)dü) = u(t) exp(j^0t) 

E(0,co) = U(co-o)0) 

Next, since the radio antenna can be modeled as a collection of oscillating dipoles with 

field pattern /r(i) the plane wave approximation can be used. This allows the time- 

harmonic wave to be written at the target a distance R} from the transmitter as indicated 
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Reference 
Point 

E,(t) 

Figure 2.1: Geometry for a single moving target showing the directions of the incident 
wave i , scattered wave ö, and the motion of the particle from a reference point with 
velocity V [7]. 

in figure 1.4 as: 

^ exp(- jkR,) , ~ 
EW,a>,i) = U{a>-a>0)    yy       /,(i) (2.5) 

The wave is then scattered from the target as indicated in figure 2.1 with scattering 

amplitude /s(6, i). This allows the field at the receiver to be written as: 

£W,^,.,i,6) = t/(.-^)exp(^w+^))exp(-^'rV,(i)/.(a.i)/,(6) (2.6) 

where R2 is the range from the target to the receiver, K = k(i - 6), r is the displacement 

vector from the reference point as in figure 2.1, and /r(6) is the receiving pattern [7]. 

Now since U(CD-COO), the baseband modulation, is approximately gaussian with a width of 

30 kHz for FM broadcasts, the narrowband approximation that the scattering amplitudes 

and antenna patterns are the constant can be made [7].  Next, since k= o/c, we separate 
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2.6 into three parts: 

£(i?,, R2, co, i, 6) = U{co - co0) exp ja> 
fRx+R2+rs-r 

a (2.7) 

Where a is the scattering amplitude divided by the range and fs = i - 6.  Now we take 

the inverse fourier transform to get the field as a function of time at the receiver: 

£(i?,,^,i,6,0 = öw t- 
Rl+R2+rs-r 

expO^oO expfrjk0 (#, + R,)) exp(-jk0rs ■ r)     (2.8) 

Now mixing this signal and making the approximation that fs ■ r « /?, ,R2 allows it to be 

written as: 

au\ t 
R, +R. 1    '   "-2 

c      J 
exp(-7*0 (i?, + i?2)) exp(-jk0rs ■ r) (2.9) 

Since r is the time-varying displacement vector from the reference point in figure 2.1, it 

follows that if we let t= 0 be the time when r = 0 then if the objects velocity is V it is 

possible to write the third term as exp(-7£0?s -V/) which is the bistatic doppler shift. 

With this change and the addition of the direct signal and the receiver noise the single 

scatter model is given by: 

T R 
x(t) = ßu{t ) exp(-jk0Rd ) + au(t '-) exp(-jk0Rs) exp(-jk0rs ■ Vt) + n{t)     (2.10) 

c c 

/(i')/(-i') 
where ß = —  with i' being the unit vector of the direct line of site between 

transmitter and receiver, L being the baseline, R* = Ri + R2 called the range sum, and n(t) 

being the receiver noise. 



17 

The scattering by multiple targets is simply the sum of the scatter by the 

targets given by equation 2.9, the direct signal, and the receiver noise since the scattered 

fields are added as vectors. This means that the measured field can be written as: 

r D 

x(t) = ß(t— )exp(-A£) + 2>,"('-— )exp(-#A)exrt-AivVO+«(0     (2.11) 

An important assumption that will be made in this thesis that has been shown 

experimentally to be true is that the correlation between scattered fields at different ranges 

is zero. 

The previous model does not account for targets which are distributed in 

range and it does not account for the changing environment. The first of these problems 

can be handled by changing the summation to an integration. The second requires that the 

coefficient of the modulation signal, u(t-R«/c), in equation 2.11 be replaced by a quantity 

called the scattering amplitude, 3>(Rs,t), which is a random variable. Its value at any given 

time at particular range is given by the targets that are there. Now this means it is possible 

to write the measured field as: 

x(t) = ßu(t )exp(-jk0L) + h(Rs,t)u(t s-)dRs +n(t) (2.12) c I c 

The variation in phase due to doppler shift means that over long time periods the 

scattering amplitude goes to zero. Also, it will go to zero because of range migration. 

These properties along with those given above can be summarized as follows: 

_(*(*„ 0)«o 
(®(Rsl,t)<l>\Rs2,t-TJ)*0 (2.13) 
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Notice that the time-correlated scattering amplitude is the radar equation 1.1 normalized 

by the transmitter power times the bistatic phase shift due to the target's motion. The 

bistatic phase shift is the result of the bistatic doppler shift of the target. 

2.3 THE AMBIGUITY FUNCTION 

The ambiguity function is the output of a filter matched to a delayed, 

doppler shifted version of the transmitter wave. It is a function of range, r, and doppler 

frequency, v, with the ideal shape of the self-ambiguity function being a delta function at 

the origin. The following is a slightly modified version taken from Levanon [8]: 

\Z(r, v)\ jy(t)x*(t - r) exp(-j2xvt)dt (2.14) 

Notice that it looks nearly like the fourier transform in doppler, except it is a function of 

range. Indeed if we define the yx sequence as being: 

yxr{t) = y{t)x\t-r) (2.15) 

then for a constant range the ambiguity function is the fourier transform of the yx 

sequence. Now if we square the ambiguity function then at a constant range we obtain the 

power spectrum of the yx sequence. Then it can be shown that the inverse fourier 

transform of the ambiguity function at a constant range results in the autocorrelation 

sequence of the yx - sequence [4]. This can also be shown through the Wiener-Khintchine 

theorem in the case of stochastic transmitter waveforms. The result is that the ambiguity 

function in the correlation domain is given by: 

Q(r,T) = E{yxr{t)yx*r(t - r)} = E{y(t)y*(t - r)x(t -r-r)x\t-r)}    (2.16) 
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The yx sequence provides a natural way of interpreting the ambiguity 

function. The question then is what is the physical meaning of the yx sequence. The 

following will provide the answer in the case of a traditional pulse radar. Consider the 

scattered wave, 

CO „ 

y(t)=   j®(R,t)u(t--)dR + n(t) (2.17) 
o c 

and the transmitter waveform x(t) = u(t). Take the time average of the yx sequence: 

Ryr (?) = (y(t)x* {t -/■)) = ([ J 0(i?, t)u(t - *)dR + n{t) ^ 

K * 
c 

= (\®(R,t)u(t--)u*(t-r)dR) + {n(t)u\t-r)} (2.18) 

]{Q>(R,t))Lt--)u*(t-r))dR = ](^(R,t))Ruu(r - j)dR 
c 

where we have used the independence of the noise and transmitter waveform along with 

their zero mean value. Also, the independence of the transmitter waveform and the 

scattering amplitude was used. The average of the scattering amplitude is zero mean over 

long time intervals for moving targets because of the bistatic doppler shift. However, if 

the averaging is done only for relatively short intervals it is constant. The averaging over 

short intervals is coherent averaging. Since the noise and transmitter waveforms average 

to zero much quicker than the scattering amplitude, coherent averaging is useful. The 

sequence that results from coherent averaging at a particular range is samples of the 

convolution of the autocorrelation of the transmitter waveform with the scattering 

amplitude(s) of the target(s) at that range. Ideally, it is desired that this autocorrelation 

would be a delta function centered at the origin. This would mean the resulting sequence 

consists of samples of the scattering amplitude at the desired range. The power spectrum 

of these samples could then be computed to find the spectrum of the scattering amplitudes 
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of the target(s) at that range. This is what the ambiguity function does. In an ideal sense, 

the ambiguity function at a given range should give us estimates of the power spectrum of 

the target(s) at that range. 

2.4 DISCRETE COMPUTATION OF THE AMBIGUITY FUNCTION 

The computation of the square of the ambiguity function is easy to infer 

from the discussion above. First, we form the yx sequences from the data at the ranges of 

interest. Next, we perform coherent averaging which can also be thought of as low pass 

filtering of the yx sequences. This is then followed by computing the periodogram using 

block averaging. The block averaging step is called incoherent averaging in the radar 

community because it involves averaging power quantities which are phase independent. 

Figure 2.2 illustrates the discrete computation. 

x(t) 
TfB=^S 

i i i i i i i i i i i i i i i i i i i i i i m 

x*(t-r) 

\ 
N        \ \ | / / 

I   I   I   MM   I   I   I   M=2 
Output of Ambiguity 
Function at Range r - 

N N 

>    I       I       I       I      I 

Figure 2.2: An illustration of the discrete computation of the ambiguity function at range r. 
As, is the length of the sequence (also will be defined as time-bandwidth product later), S 
is the number of coherent averages, M is the number of incoherent averages, and N is the 
number of Fourier frequencies. 



CHAPTER 3: THE BIAS OF THE SELF AMBIGUITY FUNCTION 

In this chapter we evaluate the bias of the self ambiguity function of the 

FM radio broadcast in the correlation domain. This can then be Fourier transformed to 

the frequency domain to give the bias of the self ambiguity function. By doing this, we 

learn about the general shape of the self ambiguity function of signal composed of a direct 

plus scattered signal. It is found that because the bias is concentrated origin of the self 

ambiguity function that it does not limit the sensitivity of the radar. 

3.1 NOTATION 

It is quite inconvenient to write out all the terms in equation 2.16 since 81 

terms result when the received signal is described by equation 2.12. Instead, the following 

convention from section 2.3 will be adapted: 

x(t) = ßu{t )exp(-jk0L) = direct signal 
c 

CO p 

y(t)= \ ®(R , t)u(t - —)<sK, = scattered signal (3.1) 
I c 

n(t) = noise 

In the analysis of multiple receivers a subscript (1,2,..n) will denote the receiver. A capital 

X(t) means the sum of all three signals: X(t) = x(t) + y(t) + n(t). It too will have a 

numbered subscript in the case of multiple receivers. 

For four-product correlations, it will be necessary to expand them out and 

use a simple convention for the four products which result.   Consider the fourth-order 
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moment: 

xw  £^2 x-^± 
< (x(t) + y(t) + n(t))(x(t -r) + y(t -r)+ n(t - r))* (x(t - r) + y(t - r) + n(t - r)) 
 X(t-r-r)  

(x(t -r - T) + y(t -r - r) + n{t -r;- r) > (3-2) 

muu= (x(t)x\t - r)x\t - T)x(t-r- r)> 

m1213 = (*(/)/(/ -^)^*('- r)n(t-r-T)) 

The two terms mmi and mi2i3 are the examples of the notation used for the four product 

terms. Notice that an index being one indicates it is the direct signal, two indicates the 

scattered signal, and three means the noise term. The position of the index indicates the 

time shift of the term with the first index having no shift, the second being shifted by the 

range r, the third by autocorrelation lag x, and the fourth by both range and 

autocorrelation lag. 

The final simplification is to represent an autocorrelation as Ruu(r) where 

the subscript is the random variable which is being correlated. 

3.2 THE BIAS OF THE SELF-AMBIGUITY FUNCTION 

To evaluate the bias of the self-ambiguity function in the correlation 

domain we must evaluate: 

0{r, r) =< (x(t) +y(t) +n(t))(x(t-r) +y(t-r) +n(t-r))\x(t - r) +y(t - r)+/</ - z))* 

(x(t - T-r) +y(t -r-r) +n(t -r-r)) > 

Instead of writing down all 81 four products it is easier to first identify terms which go to 

zero. To do this let us review the assumptions being made: 

1) The noise and the transmitter waveform are zero mean random 

variables. This means the gaussian moment theorem may be applied 
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[4], namely the second moment of the same variable without 

conjugation on one goes to zero, third moments are zero, and the 

fourth moment with two conjugated variables may be expanded using 

equation 2.29, otherwise they are zero as well. 

2) All three random variables: the noise, the transmitter waveform, and the 

scattering amplitude are independent of each other. 

3) The averaging time is long enough so that any product of the scattering 

amplitude involving an odd number of terms or an odd number of 

conjugations will go to zero. This is a result of the doppler shift of the 

moving target. This does not apply to stationary targets. However, we 

ignore these since the power spectrum should allow us to distinguish 

moving targets from them. 

We use these assumptions to eliminate terms in equation 3.3. Notice the third term of the 

received signal is noise. Using this combined with the assumptions above means the 

following 48 terms average to zero: 

mni3, mn23, mini, mn32, mi2i3, mi223, mi23i, mi232, mi3n, mi3i2, mi32i, 
mi322,   mi33i,   mi332,   mi333, ni2H3,   m2123, m.2131, ni2132, m2213, H12223, ttl2231, 
H12232,   ni2311,   m2312,   m2321, m2322,   ni2331, m2332, m2333, m3in, 1113112, ni3ii3, 
m3i21,   ni3i22,   ni3i23,   m3i33, m3211,   m3212, m3213, m3221, m3222, m3223, m3233, 
m33i3; m3323, m333i, m3332 

The scattering amplitude appears only in the scattered signal so we can eliminate 18 more: 

man, mini, mi2ii,mi22i, mi222, mi233, mi323, m2m, 1*12112,1112122, m2B3, m22i2 
012221, m2313, m3i32, m3231, m33i2, 1113321 

This reduces the problem to the following 15 four products; notice that every subscript 

appears two or four times: 

mmi, mn22, mn33, mi2i2, mi3i3, m2i2i, m22ii, m2222, m2233, m2323, n^m, 
m3232, m33n, m3322, m3333 
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Unfortunately, all these terms must be evaluated. First, let's look at the terms not 

requiring the use of the gaussian moment theorem. These all involve the autocorrelation 

of the noise times either a correlation of the scattered or direct signal. The terms are: 

"hm =»£„ ={mx\t-r)){n\t-r)rit-T-r)) = \a\2Rvu(r)Rm{-r) 

^1313 = »£i3i = (x(t)x*(t - r)){n{t-r)n{t -r - r)) = \a\2 ^(^^(-r) 

^2233 =^322 = (KO/(' -r))(nif - t)n{t - T-/■)) =  \ R^iR^R^ir^ 

^233 =^232 ={y{t)y\t-T))(n(t-r)n{t-r-r))=  \R^{Rs,T)Rjm(r)dRs 

v4 

^.(-r)      (3.4) 

Since the autocorrelation at a positive lag is equivalent to the complex conjugate of the 

autocorrelation at the negative lag we see that the terms above appear in conjugate pairs. 

This means that when summed the bias due to these terms only occurs in the real part of 

the estimate of the autocorrelation function of the scattering amplitude. When the 

autocorrelation lags are Fourier transformed to the frequency domain this clutter should 

be symmetric about the range axis. 

The last seven terms: mmi, mm2, mi2i2, m2i2i, m22ii, m2222, m3333 all 

require the use of the gaussian moment theorem. The first six terms require that it be used 

on the four product of the transmitter waveform and the last term requires its use on the 

noise. The use of the scattering amplitude being uncorrelated at different ranges will also 

be used. Finally, there is no need to calculate m2222 since it is the four product of the 

scattered wave so the small value of the scattering amplitude to the fourth power 

eliminates it. We are left with: 
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»>uu=\<x\4K(r)\2+\a\4K(T)\ 

mni2 =W2J^**(^-'') 

CO 

»»1212 =W2jÄ«*(Ä,-r) 

CO 

»»2121  =M2JX* (A,,*) 

CO 

W2211   =N2J^(^^) 

^3333=K(Or+k„(^ 

K(^)f + ^U^ L-R. 
dR„ 

KAr- 
L-R. 

Ruu(r~ 
R.-L. 

+ \Ruu(r)\2 dRs 

+ \RUU(T)\2 dRs 

(3.5) 

K(rf + dR„ 

The terms which correspond to the target are mi2i2 & m2i2i. If the transmitter waveform 

is nearly a delta function, then m2i2i should yield an estimate of the autocorrelation lags of 

the range of interest and mi2i2 yields the complex conjugate of the autocorrelation lags at 

the negative range of the target. This is the hermite symmetry of the self ambiguity 

function [8]. The terms m22n & mi 122 result from the interchangability of the range and 

the lag terms. Notice there is a hermite symmetry present here as well. This will be easy 

to notice in the following plots of ambiguity functions. The final terms are the self- 

correlation of the direct signal and the noise. 

We can now determine the bias of the self ambiguity function. Because of 

the bandwidth of the FM radio broadcast (-30 kHz), we know that the autocorrelation 

function of the baseband modulation is a sharp peak. This means that all terms whose 

arguments are either x or r must be concentrated either on the lag or range axis 

respectively. From equations 3.4 and 3.5 it is apparent this is every term except those 

involving the target(s) or its hermite counterpart. When Fourier transformed, the bias due 

to the clutter on the lag axis results in a constant being added to the clutter floor, and the 

bias on the range axis results in the spike of the self-ambiguity function at zero range and 

Doppler.   This means that the bias of the self-ambiguity function will not affect the 
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detection of a target which is not on the receiver transmitter baseline. We verified this 

result by carrying out simulations which injected a target into sampled FM broadcasts and 

trying techniques which can be derived from the analysis above to reduce the bias. In all 

cases, the results showed that there was no difference between biased self-ambiguity 

function estimate and the estimate whose bias we had reduced. This means that the 

sensitivity of the radar is determined not by the bias, but instead is determined by the 

variance of the self-ambiguity function. We discuss this problem in the next chapter. 



CHAPTER 4 

THE PROBABILITY DISTRIBUTION OF THE SELF AMBIGUITY FUNCTION 

The last chapter indicated that the sensitivity of the bistatic FM radar is 

independent of the bias of the self ambiguity function. Instead, it depends upon the 

variance of the clutter floor of the self ambiguity function. If we were to pursue the 

variance through the technique of last chapter, the combinatoric blossoming of terms 

would quickly overwhelm us. However, if we make the additional assumption that the 

signal's spectrum is white it is possible to arrive at a useful description of the self 

ambiguity function's probability distribution. We can then make phenomenological 

adjustments for the case of the FM radio broadcast. In addition, knowing the self 

ambiguity function's probability distribution also allows a performance analysis of the 

radar to be made, and it provides a way to determine the threshold for automatic detection 

systems. 

4.1 DERIVATION OF THE PROBABILITY DENSITY OF THE CLUTTER FLOOR 

Calculating the probability density of the self ambiguity function seems a 

daunting task considering the steps needed to determine the bias of the ambiguity 

function for a gaussian signal. However, if we make the following two assumptions 

about the received signal then it will be possible arrive at a theoretical model that can be 

compared to experimental results. 

1) The process is white which means E{x(t)x*(t-r)} = 0 for r * 0. 

2) The real and imaginary terms of x(t) are uncorrelated and Gaussian 

distributed with zero mean. 
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These two assumptions mean the in-phase (real) component x;(t) and the quadrature 

(imaginary) component x (t) are independent of each other and are independent of 

themselves except for r=0. 

To calculate the probability density of the clutter floor of the we first 

consider just the direct signal. Form the new sequence a(t) = x(t)x*(t-r), where r is the 

range variable which is greater than zero. Consider the mean of the new sequence: 

E{xi(t)xi(t-r) + xq(t)xq(t-r) + j[xq(t)x!(t-r)-xi(t)xq(t-r)]}=0      (4.1) 

which follows from the independence of the zero mean gaussian random variables. Next 

consider the variance of the in-phase component of a(t): 

varte(f)} = £{(^(0^-r)+^(0x,,(?-r))2} = 

E{x,(tfx,(t-rf +2xl(t)xi(t-r)xq(t)xq(t-r)+xq(tfxq(t-rf} = (4.2) 

E{xXtf}E{xXt-rf}+2E{xXt)}E{xXt-r)}E{xq(t)}E{xq(t-r^ 

Where the last two steps follow from independence and the assumption the random 

variables are N(0,a). It can be similarly shown that: 

var{aq(t)}=2a4 (4.3) 

Next, we show that the real and imaginary components of a(t) are uncorrelated: 

corr{ai{t),aq{n} = E{ai{.t)aq(f)} = E{xi{t)xt{t-r)xq{t')xi{t'-r)- 

x, (f)x. (t - r)X; (t')xq (t'-r) + xq (t)xq (t - r)xq (/')*,. (t'-r) - (4.4) 

xq(t)xq(t-r)xi(t')xi(t'-r)} = 0 

Where the last step follows from the independence and zero mean of the random 

variables and holds for all sets of (t,f) including t = t'.   Finally, we show that real and 
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imaginary components are uncorrelated with respect to themselves except for t = t'. We 

show the proof for the real part only since its similar for the imaginary component. 

£{(*,. (t)x, (t-r) + xq (t)xq(t - /■))(*, (t')xs (t'-r) + xq (t')xq(t'-r))} = 

E{x., (0*; (t - r)x,. (f >,. (t'-r) + x-t (t)xt (t - r)xq (t')xq (t'-r) + t*t' 

xq(t)xq(t- r)Xi (f )x, (t'-r) + xq(t)xq(t-r)xq(t')xq(t'-r)} = 0 

(4.5) 

The result follows from the requirement that r*0. In this case the only way there could be 

a nonzero term is if the following two equations are satisfied: 

t = t'-r 

-t'=t-r 

t-t'=t'-t=>t = t' 

which is what we wanted to show. 

With these properties of a(t) in mind we proceed in a manner quite similar 

to the computation of the probability density of the spectral density function given in 

Percival pages 220-223 [9]. First, we note from chapter 2 that the ambiguity function is 

the power spectrum of a(t). This is estimated through the periodogram which we define 

as [10]: 

S(f) = 
N-l 

Zfl0)expl 
n=0 N 

(4.6) 

We expand the inner summation into its real and imaginary components: 

N-\ 

t=0 

t=0 

2>(0expl-^) = I 
N 

(lift 

N-\ 

r=0 
fl,(0cos 

'2^ 
+ a 

(2nft 

(2nft 
«,(0co^-jJ-J-ai.(0sin^— 

\ N J 

= A(f) + jB(f) 

+ 
(4.7) 
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This means S(f) = A(f)2+B(ff. Now we wish to show that A(f) and B(f) are independent 

Gaussian random variables over the set of fourier frequencies (f an integer between 0 and 

N-l). To do this we first show that A(f) and B(f) are uncorrelated over the Fourier 

frequencies. 

'N-\ 

corr{A{f\B{f)) = E{A(f)B(f)} = E^a^t) col^j +aq(t)sm[ 
V N 

rN-\ 

2>,c) CO! 
v=o 

27f'f 
-a(f)sm 

N J 

'2nTf \\ 

V  N JJ 

N-l N-l 

MIZ 
r'=0r=0 

ai(t)aq(f)ax{— 
2nft\     (2rft' 

CO! 
N 

fl.(f)flI.a
,)co^—Jsir^-^-J+ag(0ag(r')sin^— 

= 1 

IN  .  (27fi\       (27f'f 

(27ft\       (27f'f 

^r 4. (27ft\ (27ft 

r=0 

.       (l7ft\   .  (27ft 2a H—Js,nl— + 

= 0 

(4.8) 

The third step follows from 4.3, 4.4, 4.5, and the linearity of the expectation operator. 

The final step involves the use of the relation derived in exercise 1.4 of Percival [9]: 

N-\ 

X[cos(2#)sin(2^7)] = — X[exp(;2^(/'+/)) - exp(-;2Ä(/'+/)) + 
r=0 

exp(-72^(/-/,))-expO-2^(/-/')] = 5/v(/-/') + 5w (/+/'). 

N sin(N7f) N 
SN(f) = ——sm((N-l)7f) = — DN(f)sm((N-l)7Tf) NU

 '     2 Nsm(Ttf)     u J        2    NKJ 

(4.9) 

where DN(f) is one form of Dirichlet's kernel. Since we are interested in the frequencies 

between 0 and N-l it follows from 4.9 that 4.8 is zero. This is for all except f = 0, but we 

are not interested in it since we expect our targets to have some motion. This shows that 

that A(f) and B(f) are uncorrelated for any combination of fourier frequencies except for 

f,f = 0. 
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Next, we show that A(f) and B(f) are Gaussian distributed using the 

Central Limit Theorem. The Central Limit theorem states that the sum of n independent 

random variables tends towards a N(u.,cr) where p=n,+...+u.n and a2=cr2
1+...+G2

n as n 

approaches infinity [10]. This requires that we show the variables in the summation are 

independent. In the case of 4.7, this means it is necessary to justify that a^t) is 

independent of a(t') and similarly for aq(t). Consider a(t): 

a, (f) = x, (t)x, (t-r) + x (t)x (t - r) 
q      q (4.10) 

ai(0 = xi(Oxi(t'-r) + xq(t')x(i(t'-r) 

We offer the following heuristic justification based on conditional probability. It is 

necessary to show that knowledge of a^t) does not increase our probability of guessing 

the value of a(t'). Since tet' it means XjOOx^t'-r) is independent of xi(t)xi(t-r) and 

x (t)x (t-r) is independent of xq(t')xq(t'-r). This follows from the fact that multiplying two 

independent random variables by a constant does not change their independence. Since 

this is true it quickly follows that a(t) must be independent of a(t'). This reasoning can 

be extended to showing that all the random variables in the set {a(0)...a;(N-l)} are 

independent. We use the following Bayesian theorem of probability which states that 

[10]: 

P(A„...A1)=P(A„|A„.i ...A1)...P(A2|Ai)P(A1) (4.11) 

where An ... A± are events which in the case of a random variable A; = Xj<x; which means 

P{Aj} is simply the cumulative distribution of X;. Consider the case of N = 3. We have 

already shown that the random variables a;(0), a;(l), a*(2) are pairwise independent, but 

we must show: 

P({ai(0)<x0}n{ai(l)<x1}n{ai(2)<x2})=P({ai(0)<xo})P({ai(l)<x1})P({a1(2)<x2})   (4.12) 

This follows easily through adding an additional term a;(t") to the two already present in 

4.10.   Notice that this third term contains a new random variable aj(t') which will be 
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independent of a;(t) and aj(t'). Using equation 4.11 and this independence between terms 

it follows that 4.12 holds. This process can be continued inductively to show that the set 

{aj(0)...ai(N-l)} is composed of independent random variables. Similarily, this can be 

shown to be true for a^t). 

Now we may apply the Central Limit Theorem to the four sums in 4.7. 

r     nr-r ,.   _N\ f 

This means we have A(f) ~  TV 
IJV-1 O^E^cos^M 
r=0 

+   N 
N-\ 

o,J2>« sin' 
r=0 

2(2tft_ 

N 

and B(f) ~ N 
N-l 

0,.f£2a4cos7 

;=0 

2nft 

N 
+ N 

IN-l 

0,-E2cr4si sin 
r=0 

2nft 

N J 
where we have used 

the fact that the taking the negative of a zero mean gaussian random variable does not 

change its distribution. Combining the distributions of A(f) requires that the correlation 

between the two normal distributions be computed. However, this is easily seen to be 

zero since equation 4.4 shows that aj(t) and aq(t') are uncorrelated for any combination 

(t,f).    This obtains A(f) ~  JV(0,o-2V2ÄÖand similarly it can be shown that B(f) ~ 

N(0,a2yi2N). 

Finally, we can determine the probability density of the self .ambiguity 

function of a white Gaussian signal away from r = 0. First, we note that because A(f) and 

B(f) are uncorrelated and Gaussian they must be independent. Next, we scale A(f) and 

1 1 
B(f) as A(f)   ~ N(0,1) and 

a24lN 
B(f)~ N(0,1).     Now squaring the 

a2j2N 

normalized variables results in two independent chi-square random variables with one 

degree of freedom [10]. Next, summing two independent chi-square random variables of 

one degree of freedom results in a chi-square random variable of two degrees of freedom. 

This gives: 

ührte'-rf 'ibs'{f)-ibA(f)I +ibB(f)' ■xi (4-13) 
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where we have used capital chi squared to represent the ambiguity function squared and 

the lowercase chi squared represents the chi-square distribution. Next, if incoherent 

averaging (block averaging with no overlap) is used it follows that the chi-square random 

variables from each block should be independent of each other, since the data from block 

to block is independent. This means the ambiguity function squared will have the 

following distribution: 

i^l^l2 =^5'(/)=^[¥!>"(/)2 + s»(/,!]^»    <414) 

Finally, we consider the effect of coherent averaging. In this case, aj(t) and aq(t) are being 

pre-averaged before being summed in 4.7. As long as the blocks of a(t) that are being 

pre-averaged do not overlap the independence relations hold, but the variance of aj(t) and 

a<,(t) changes. The averaging is done as follows: 

i   S-l 1   5-1 

•J  s=0 *-*  s=0 

where S is the length of the average. It follows that the semivariances of as(t) are both 

equal to 2a4/S. This means that to account for coherent integration 4.14 should be 

modified as follows: 

^X'fr./,-^S,(/)=^[^|^(/)'+/».(/)V^     (4,6, 
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4.1.2 COMPARISON TO SIMULATED DATA 

Theory must agree with experimental evidence in order for a model to be 

useful. We start by examining whether 4.16 actually predicts the true behavior of the 

square of the ambiguity function. To begin, a complex sequence whose real and 

imaginary components are uncorrelated and gaussian distributed with zero mean and unit 

variance is generated in Matlab. Although it is not necessary to attach a sampling 

frequency, we use a frequency of 250 kHz since this is the sampling frequency of the 

experimental data that is presented later. The length, L, of the sequence that is analyzed 

is 131,072 points which means it is approximately a half second of data. The following is 

i i2 

the plot of |X(r,/)| using a coherent averaging factor S = 250, block size N=64, and the 

incoherent averaging factor M = 8. The incoherent averaging factor can be determined as 

M = LL/(SN)J (L J is the greatest integer less than or equal to the quantity in the brackets). 

White Gaussian Signal 

x 10 

Doppler Shift - Hz -500      o 
Range - Km 

Figure 4.1: Plot of |x(r,/)| of a White Gaussian Signal. Created from 0.52 seconds of 

data sampled at 250 kHz. Block size (N=64) and coherent integration factor (S=250). 
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Doppler Shift - Hz -500      0 
Range - Km 

Figure 4.2: Same as Figure 4.1 except range 0 is not displayed. Shows clutter floor. 

Doppler Shift - Hz -500      0 
Range - Km 

Figure 4.3:   Plot of the clutter floor for same white gaussian signal except this time 

\X(r,f)f was computed with N=128 and S= 250. 
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Figure 4.1 is the desired thumbtack appearance of the white gaussian signal. The next 

figure on the following page, figure 4.2, is the same plot except for all ranges greater than 

zero. This is the clutter floor that equation 4.16 should describe. Figure.4.3 is the plot of 

the clutter floor except this time the ambiguity function was computed with a different 

block size N=128. The next step is to compute the normalization factor and multiply it 

times the square of the ambiguity function. Then the histogram of the clutter of figure 

4.2 is plotted versus the predicted chi-square random variable of 16 degrees of freedom in 

figure 4.4. Similarly, the clutter floor of figure 4.3 is plotted against a chi-square of 8 

degrees of freedom in figure 4.5. The results appear to fit the distributions very closely 

which gives us confidence in equation 4.16. 

However, an even better test for determining the closeness of a probability 

distribution to a theoretical model is to use the Kolmogroff-Smirnov (K-S) test [10]. The 

K-S test is a hypothesis test with null hypothesis that the distributions are equal and the 

alternative hypothesis is that they are different. The test statistic is: 

q = max|F(jc)-F0(x)| (4.17) 

where F0(x) is the hypothesized cumulative distribution and F(x) is the empirical estimate 

of the cumulative distribution. Estimating the cumulative distribution is done by first 

sorting the data into ascending order and then assigning the value of i/N to F(*,) where i 

is the position of the data point in the sorted sequence. N is the length of the sequence. 

Obviously, it follows from equation 4.17 that if the two distributions are equal then q 

should be near zero if a sufficient number of points, N, are used. This is expressed as 

[10]: 

Accept H0 iff q<A/^rlny (4.18) 
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Figure 4.4: The histogram vs. the theoretical prediction, xlf, ■> f°r tne data of figure 4.2. 
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Figure 4.5: The histogram vs. the theoretical prediction, xl» f°r the data of figure 4.3. 
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10 15 20 25 
Normalized Value 

30 35 40 

Figure 4.6: Plot of theoretical vs. empirical cumulative distribution function for data of 
figure 4.5, N=2,240. The two curves are essentially indistinguishable. 

where a=P{q>clH0}« 2e~2"c"is the significance level. A value of a near one indicates 

that we have correctly identified the distribution. Figure 4.6 shows that the empirical 

cumulative distribution of the data in figure 4.5 is essentially indistinguishable from the 

theoretical cumulative distribution of a xl ■ 1° tnis case> Q = 0.00825. A value so small 

that for all values of a<l it easily passes 4.18. This means we should accept the null 

hypothesis, and it gives strong justification that equation 4.16 correctly models the 

simulated data. 

4.1.2 MODEL COMPARISON TO EXPERIMENTAL DATA 

The data that will be used is six different samples each of length 0.5 

seconds of FM radio broadcasts taken at a sampling frequency of 250 kHz. The 

broadcast stations that were sampled were Al=106.9, A2=93.3, A3=94.9, A4=94.9, 

A5=97.3, and 
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A6 = 97.3. A3 and A4 were sampled on different days as well as A5 and A6. The three 

sequences Al, A4, and A5 were sampled at approximately the same time on the same 

receiver, and the sequences A3 and A6 were also taken at nearly the same time on the 

same receiver. The purpose of choosing these samples was to ensure that any 

characteristics that could be due to receiver error could be identified by showing up in 

sequences taken at nearly the same time. 

Before we begin the comparison to empirical data, we give a brief 

justification why we should expect similar behavior. The assumptions that the radio 

broadcast is white Gaussian noise is obviously incorrect. However, it is well known that 

the autocorrelation time of the broadcast is less than 10 jxs [4]. Also, since the spectrum 

of the FM broadcasts are known to be approximately gaussian which implies symmetry 

about the carrier frequency, it can be shown that the in-phase and quadrature components 

are uncorrelated [2]. Thus, we appeal to the same argument that Percival uses to justify 

the density of the periodogram for non-white/non-gaussian processes which requires 

certain higher-order moments to be finite [9]. It applies because that analysis is being 

used here to determine the probability distribution of the ambiguity function, and because 

the FM waveform has finite moments of all positive orders [11]. 

First, we look at the ambiguity plots of the six sequences. The plots are all 

of IX(r,f)l not its square since this makes the clutter problems more apparent. By range 

we mean the difference between the direct and scattered path. Also, the Doppler shift is 

given in Hz instead of velocity since the carrier frequencies change from station to 

station. 

Out to about the range of 10 km there appears to be quite a bit of 

unexpected clutter in all the signals. Signals Al, A4, and A5 all have a strip of apparent 

clutter out to 50 km at zero doppler. Since the data was taken at different frequencies, it 

is probable that this is due to a constant DC offset in the receiver. However, if we look 

on either side of zero doppler the plot appears relatively flat. The flatness of the clutter 

plane also appears in A2 and A6.   However, signal A3 appears to have considerable 
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clutter. A possible explanation for this is that it is known that the station at 94.9 MHz has 

its transmitter located on Capitol Hill which is only 1-2 km from the University where the 

data was collected. In contrast, the rest of the stations are known to have transmitters 

located further than 20 km away. However, we also know A4 is a sample of the station at 

94.9 MHz, but does not appear to have the clutter at ranges greater than 10 km. One 

important difference is that A3 was generated at approximately 4 pm opposed to A4 

which was sampled at 1 am. It is possible that the change in daily activity along with a 

possible change in the transmitting mode at night could make the difference. 

With the clutter problems of the signal, we would not expect our model to 

hold for ranges less than 10 km. Additional inspection showed that there was still some 

clutter in the ranges out to 16.5 km. That the waveforms of the IX(r,f)l2 resembled the 

clutter floor of the white Gaussian signal for this set of ranges can be seen in figures 4.10 

- 4.12. Notice that there is still a bit of clutter in Al, A2, A4, A5, and A6 with a 

considerable amount present in A3. However, we continue by plotting the histograms of 

the data versus X\f> • One problem is proper normalization of the data. In the simulation, 

we controlled the variance of real and imaginary components of the signal, but here there 

is no control. This means it is quite likely that the real and imaginary components will 

have a different variance. Also, we know it is not a white noise process. This means the 

normalization constant calculated in 4.16 is incorrect because when summing the 

variances the cross correlation between terms must be included. Instead, we compute the 

normalization constant by forcing the mean of the data to take the same value as the mean 

of aZ\6- Since, the mean of a chi-square is equal to its degrees of freedom this is a 

simple procedure. The histograms can be seen in figure 4.13 on the following page. The 

number of data points used in each histogram is 806. Notice that there is definite 

mismatch for signal A3. However, Al, A4, and A5 also appear to have a problem with 

their means being located in the wrong place. The general shape of the histograms 

though appear close to the chi-square density. We gain confidence by looking at A2 and 

A6. Notice that 
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Signal A1 
x10 

Doppler Shift - Hz 

x104 

Range - Km 

-500      0 
Doppler Shift - Hz Range - Km 

Figure 4.7: Mesh plots of IX(r,f)l of signals Al = 106.9 Mhz & A2 = 93.3 Mhz sampled at 
different times. 

Signal A3 
x 10 

0 
500 

-500      0 
Doppler Shift - Hz Range - Km 

Figure 4.8: Mesh plots of IX(r,f)l of signals A3 = 94.9 Mhz & A4 = 94.9 Mhz sampled at 
different times. 
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Signal A5 
x 10 

-500      0 
Doppler Shift - Hz Range - Km 

Figure 4.9: Mesh plots of IX(r,f)l of signals A5 = 97.3 Mhz & A6 = 97.3 Mhz sampled at 
different times. 

Signal A1 
x 10 

10-, 

-600      10 
Frequency - Hz Range - Km 

Figure 4.10: IX(r,f)l2 for A3&A4 for ranges 16.5 km - 50 km and frequencies -500 Hz to 
-15 Hz. 
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Signal A3 
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10-, 

-600      10 
Doppler Shift - Hz Range - Km 

Figure 4.11: IX(r,f)l2 for A3&A4 for ranges 16.5 km - 50 km and frequencies -500 Hz to 
-15 Hz. 

Signal A5 
x 10 

-600      10 
Doppler Shift - Hz Range - Km 

Figure 4.12: IX(r,f)l2 for A5 & A6 for ranges 16.5 km - 50 km and frequencies -500 Hz to 
-15 Hz. 
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these two data sets nearly match the chi-square distribution. Indeed, when we compute 

the cumulative distribution and plot it versus the theoretical cumulative distribution of a 

x\b A2 and A6 appear quite close to the theoretical distribution. This is shown in figure 

4.14. 

However, when the significance level of the Kolmogroff-Smirnoff test 

statistic is computed we find that it indicates that we should reject the hypothesis that the 

distributions are the same for all the signals. 

Table 4.1: Kolmogroff-Smirnoff Statistics for Al - A6 

Signal: M A2 A3 A4 A5 A6 

q 0.1603 0.0429 0.3783 0.1603 0.1438 0.0795 

a 2-10"18 0.103 1.3-10"100 2.05-10"18 7-10-15 7.522-10"5 

The extremely small values of the K-S significance level definitely 

indicate that despite looking quite similar the distributions are indeed different. The 

reason for the difference is that the clutter introduces points which lie far outside the 

region of probability for the chi-square distribution. For example, the probability of a 

point being greater than 45 for the chi-square distribution is 1/7205, but we see in figure 

4.13 that all the signal's histograms contain points beyond this value. This shows that this 

theoretical model is unable to adequately describe the characteristics of the self ambiguity 

function of the FM waveform. This stands even if A3 is considered an anomaly. 

However, a technique does exist that can help eliminate some clutter 

variation at the expense of increasing the noise variance. The idea can be seen by 

recalling from section 3.2 that the clutter due to noise is symmetrical about the range axis 

in the frequency domain. There is strong evidence of this in the Figures 4.7, 4.8, and 4.9. 

It is also known that the target signal is a complex sinusoid and should therefore appear 

asymmetrically. Normally, subtracting two random variables is not advised because it 

increases the variance due to noise. However, in this case it is apparent that the clutter 
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Signal A1 Signal A2 

Signal A3 Signal A4 

0        50      100     150     200 

Signal A5 Signal A6 

Figure 4.13: Histograms of the IX(r,f)l2 for ranges 16.6-50 km and frequencies -500 Hz to 
-15 Hz. 

contribution is dominant so the overall effect is to decrease the variance.   This can be 

seen in the following calculation: 

E{(S(f) - S(-f))2 - E{S(f) - 5(-/)}2} = E{S(f)2} - 2E{S(f)S(-f)} + 

E{S(-f)2}-E{S(f)}2 +2E{S(f)}E{S(-f)}-E{S(-f)}2 = (4.19) 

(72+C72
2-COW{S(f),S(-f)} 
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Figure 4.14: Cumulative Distribution corresponding to data and theoretical curves of 
figure 4.13. 

where a, is standard deviation of S(f) and a2is the standard deviation of S(-f). Notice that 

if the covariance is quite large, then the overall variance of the resulting random variable 

is reduced. 

Since the distributions are correlated, it may seem quite difficult to 

calculate the resulting probability density function. However, it can be shown that if we 

take the square root of the IX(r,f)l2 then the result is a chi density of 2M degrees of 

freedom. Its mean, variance, and distribution are given by [10]: 

M 

2M + 1 

= V2 2      -2 2                           x 
^,„s a2=2M-{i2     LM=-s Jt2"_1exp( )U(x)     (4.20) 
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where T(x) is the gamma function and U(x) is.the unit step function. The chi density can 

be approximated by a Gaussian with mean and variance given by equation 4.20 [12]. It is 

well known that if two gaussian random variables are summed then even if they are 

correlated the result is a gaussian [10]. This means IX(r,-f)l - IX(r,f)l will be a Gaussian 

with a mean close to zero and variance given by equation 4.19. 

First, we verify that this works with the simulated data. Figure 4.15 shows 

the result of subtracting the positive frequencies from the negative frequencies for the 

white Gaussian signal. Notice that it appears to have increased the variance while 

making the mean near zero. Figure 4.16 shows the histogram from the data in figure 4.15 

and it shows the curve representing the theoretical gaussian model with mean zero and 

variance given by 2a2 = 2(2M-(i2) where ^ is given by equation 4.20 and M is the number 

of incoherent averages (M=8 in this case). Notice that the data in figure 4.15 has to be 

properly scaled by the square root of the factor given in equation 4.16 for the model to be 

applied correctly which is the reason for the different scale in figure 4.16. Next, figure 

4.17 shows the plot comparing the theoretical vs. the empirical cumulative distribution. 

The distributions appear to nearly identical from the plot. The q = 0.0157 which results in 

a significance level for the 806 points of a «1. Let's see if this procedure achieves the 

desired result with experimental data. Figure 4.18 shows the negative frequencies minus 

the positive frequencies for ranges 16.5 - 50 km for signals Al & A2. The key fact is that 

the large hump is gone in Al and that both data sets look more like identically distributed 

noise than in Figure 4.7. Figure 4.19 shows histograms for the negative minus positive 

frequency data sets for all of the experimental signals that we have looked at. Notice the 

definite improvement with all except A3 being closely approximated by the theoretical 

Gaussian curves. The parameters for the densities were estimated from the data since we 

already know that the normalization of equation 4.16 is not adequate for the 
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Figure 4.15: Plot of the negative frequencies minus the positive frequencies for the white 
Gaussian waveform. 
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Figure 4.16: Histogram of figure 4.15 versus the theoretical Gaussian curve 
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Figure 4.17: Cumulative distribution function of the theoretical (smooth curve) vs. the 
empirical cumulative distribution of figure 4.16. 

Signal A1 
x 10 

2-, 

Frequency - Hz 

-600      10 
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Figure 4.18: Mesh plot of IX(r,-f)l - IX(r,f)l for signals Al & A2 
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Figure 4.19: Histogram plots of IX(r,-f)l - IX(r,f)l for signals Al - A6. 

experimental data. Figure 4.20 shows the cumulative distributions that result from the 

histograms and the theoretical densities. Notice that all except A3 are indistinguishable 

from their theoretical distributions. Indeed, the K-S statistics are all close to one except 

for signal A3. However, the values of the significance of the K-S statistic should be 

taken rather heuristically since we estimated the parameters of the theoretical distribution 

from 
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Table 4.3: K-S statistics for figure 4.18 

Signal Ai A2 A3 A4 M A6 

q 0.0266 0.0309 0.0791 0.0266 0.0221 0.0238 

a 0.639 0.429 8.33E-5 0.639 0.910 0.803 

the data. This seems to indicate that the distributions are close to being Gaussian. Also, 

the histograms of figure 4.19 show that the histograms of the data are quite similar to that 

of the simulated white Gaussian signal. For these reasons, and because the Gaussian 

distribution is simple to calculate we use it as the basis for establishing the detection 

threshold. 

4.2 DETERMINATION OF THE DENSITY WITH A TARGET PRESENT 

The next step is to determine the distribution of IX(r,f)l2 when a target is 

present at a given range and doppler frequency. In the case of high SNR, the value of 

IX(r,f)l2is relatively easy to compute for a single target. First, we rewrite the signal, x(t), 

as x(t) = u(t) + aexp(j27rut)u(t -r0). This means a(t) becomes more complex. 

However, as long as r#r0 the probability density of the clutter floor remains quite similar 

to equation 4.16 with only the variance changing. Now when r = r0 and we assume the 

energy of the scattered signal is much larger than the variance of the clutter floor of the 

ambiguity function it is possible to approximate value of the ambiguity function at r0. 

This assumption allows us to write the ambiguity function at the point of the target as: 

|X(r0,u)|2 
N-\ 

J^a\u(t-r0)\ exp(-j2?U(u-f /N)) 
r=0 

(4.21) 

which evaluates to 4a2a4N2 if v«f/N. Next, this value must be scaled by the quantity 

given in equation 4.16. The result is 2a2NMS. However, we recognize that NMS as the 

length of the sequence. We rewrite this as NMS = Tfs where T is the time length in 

seconds and 
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Figure 4.20: Cumulative distributions corresponding to figure 4.19. 

fsis the sampling frequency. We will call this the time-bandwidth product of the signal 

processing algorithm, As. Now in the case of a white noise signal the time-bandwidth 

product of the signal processing algorithm is equal to that of the transmitted signal, A,.. 

This means that for a white noise signal the value of the self-ambiguity function when a 

target is present is the ratio of the energy of the scattered signal to the power per hertz, Nc 

= P/fs, of the direct signal, 2Es/Nc. This shows that there are two basic ways to increase 

the sensitivity of the radar. The first is to increase the averaging time. The second is to 
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increase the bandwidth of the transmitted signal. In fact, it will soon be shown that the 

time-bandwidth product of the FM broadcast signal is insufficient to realize the gain 

required to detect aircraft. 

To show this for the bistatic FM radar we compute an approximate form of 

the probability density of IX(r,f)l2 when a target is present. To do this we reconsider 

equation 4.21 and rewrite the inner term of the summation 

z 
r=0 

x(t)x*(t-r0)exp[ - jla — 
JV-l 

= j[d§u(t)u(t-r0) + au(t)u*(t-2r0)- 
f=0 

e\p(-j27rv(t - r0)) + aexp(j2xvt)\u(t - r0)\   + a2 exp(j2xvt)exp(-j2xv(t - r0)) • 

u{t)u\t - r0)exp[ - 7'2^ — + 
(4.22) 

u(t - r0)u(t - 2r0)]exp[- ß*jj)\ * £ 

f\a\u{t-rQ)\2\ = A(f) + 2acr2N + jB{f) 

where A(f) and B(f) are given by equation 4.7. It has been assumed here that the 

scattering amplitude is sufficiently small that the variance of A(f) and B(f) is not affected 

by the extra terms involving a. Now when we square the real and imaginary parts the 

result is a noncentral chi-square density [2]. The noncentral chi-square density is defined 

as the distribution that describes the random variable: 

y = t(C.+*n)2       n = ±Cl (4.23) 
n=\ n=\ 

where the xn are independent zero-mean Gaussian variables with common variance a2. 

The Cn are the constants and we have also defined the quantity Q which is the parameter 

along with a and N which characterize the distribution of y given in the unnormalized 

form as: 
N-2 

f(y) = 
l 

2<T2 

y Qy 
exp[-(y + Q) / (2cjz )]/„„_, (^-) (4.24) 

where IN/2_,(y) is the modified Bessel function of first kind and order N/2-1. The case of 

interest is the noncentral chi-square that results when the value of the square of the 
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ambiguity function at the range and doppler frequency of the target is computed with both 

coherent and incoherent integration. Coherent integration scales the variance of A(f) and 

B(f) as described earlier by a factor of 1/S. Incoherent integration requires that we 

rewrite the step as: 
i    M-\ i    M-l 1     M-\ 

SV)= — YJSi{f)=—JJ(Ai{f) + 2acT2Ny-+ — YJ(Bi{f))   = 
l-° /=° i=0 (4 25) 

""' A,(/)     2acr2N,    ^fW)V 

ti 4M     VM       Ü^4M) 

This means the variance is GS
2
 =2CT

4
N/MS and that Q = 4a2a4N2. Next we normalize the 

S(f) by its variance (notice it is the same as the normalization parameter in 4.16). This 

results in the normalized noncentral chi-square distribution with noncentrality parameter 

X = H/as
2 = 2a2NMS = 2a2As. This results in the standard form of the noncentral chi- 

square density with noncentrality parameter A. [2]: 

/(y) = \{yl A)i2M-2)" exp(-(y + Ä) 12)1 M_x (Jty) 

py=A + 2M (4.26) 

where N has been substituted by 2M because we summed 2M independent noncentral 

chi-square densities. Figure 4.21 is a plot of the normalized noncentral chi-square density 

with a=0.02, N = 64, M = 8, and S = 250 contrasted with the chi-square density of 2M 

degrees of freedom. Notice that there is almost no overlap between the densities which 

means probability of detection, PD « 1, and probability of false alarm, PFA « 1. Next, we 

consider the density of the modulus of the ambiguity function, IX(r,f)l, at the target. The 
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Figure 4.21: Plot of noncentral chi-square with 1=102.4, 2M = 16, versus a chi-square of 
2M = 16 degrees of freedom. 

density is simply the noncentral chi density given by [2]: 

2M-2) 

fv2Y 
f(y) = y \ A ) 

4 A    y2 

exp(-y-y)Vi(V>^) (4.27) 

where X. is the same noncentrality parameter as before and IM.,(y) is still the modified 

Bessel function of the first kind. The mean and variance of the noncentral chi density can 

be approximated as [from equation 26.4.38 found in reference 12]: 

// = ,a- 
(\+b) 

+ 0(a-yz) a = A + 2M     b = Al a 

<J2=(i-^-)-^-[8b + (l + b)(\-lb)) + 0(a-2) 
L od 

(4.28) 
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However, if the noncentrality parameter is moderately greater than the degrees of 

freedom, 2M, then we may take b«l. This means we can approximate the mean as 

(IÄ-7/1 + 2M-1 and a2«l. Although, first order correction could be completely made 

this will be quite close if the condition above is met (this will be the case for any targets 

we wish to detect because the mean must be greater than the mean of the clutter). In 

addition this approximation lowers the estimate of the mean and increases the value of the 

variance. This is good because it means the true values will yield a better probability of 

detection than the approximation will. 

Because the chi density can be approximated as Gaussian, it follows that 

the   noncentral    chi   density    can   be   approximated   as   the   Gaussian    density, 

N(V/l + 2M-l,l'). This means that when the positive frequencies are subtracted from 

the negative frequencies that if a target is present its distribution is given as a Gaussian 

with mean and variance of: 

. 2M + 1 r 
JU = y/A + 2M-\-yf2      ^.^— or1 = \ + 2M 

T{M) ^   ' r(M) 
(4.29) 

However, just as the noncentral chi density's mean and variance can be approximated, we 

can do the same with the chi density. Abramowitz and Stegun (equation 26.4.34) give 

the approximations as [12]: 

// = {l + [32M(2M-l)r1}J2M-^- + 0((2M)-7/2)«V2M 

,     1115 .       1 
o-2 =-—TTT——T + —T7T + 0((2M) -4)* 

(4.30) 

2    16M    6AM1    5\2M" 2 

Where we have used the assumption that M>2, which means that we are overestimating 

the mean and variance of the clutter. This good because when subtracted from the 

noncentral chi density it makes the mean smaller than it should be and the variance larger. 
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Figure 4.22: Plot of gaussian with mean «6.84, variance «1.5 versus a gaussian with 
mean «0 and variance «1 

Thus, it will generate a probability of detection which is slightly less than the true value. 

Using 4.30 we may rewrite 4.29 as: 

//«VA + 2M-1-V2M      o-2«L5 (4.31) 

4.3 IDEAL OPERATING CHARACTERISTICS OF THE WHITE GAUSSIAN 

SIGNAL 

The previous two plots give us an intuitive feel for how the operating 

characteristics of the radar can be determined from equations 4.16, 4.20, 4.26, and 4.29. 

The figures show the detection of a target can be posed as binary hypothesis-testing 

problem with hypotheses: H0 - No target present and H, - target present. The performance 

of the radar is determined by finding the Pd, the probability of detection, and Pf, the 

probability of false alarm. 



58 

Although many possibilities exist, we choose to analyze the performance 

of the radar through a simple threshold system. The system is simply: 

|X(r,/)|2>X, or ||X(r,-/)|-|x(r,/)||>X, (4.32) 

where the second equation is a two sided threshold which allows detection of a target at 

either a positive or negative frequency. The probability densities that describe the first 

test are given by equations 4.16 and 4.26. The mean and variance of the Gaussians that 

describe the second test are given by 4.20 and 4.29. The probability of false alarm for the 

simple threshold system is given by Pf = P{|x(r,/)|   > Xt\ H0}, and the probability of 

detection is given by Pd = P{ |x(r,/)|   > X, I H,}.  These can be easily determined after 

X, is chosen by integration of the appropriate probability density. However, in radar it is 

desirable to chose a maximum value of Pf and then to choose the threshold level to 

maximize Pd which is called the Neyman-Pearson strategy [2]. In this case, it is obvious 

that the threshold value(s) that will achieve this can be determined either from the 

percentage points of a chi-square or the standard deviation of a Gaussian. 

First, we consider the performance characteristics using the square of the 

ambiguity function. The distribution when no target is present is the X\M 
anc* with a 

target it is the noncentral chi-square of equation 4.26. Figure 4.23 is the plot of the Pd vs. 

Pf with values of 201og(a), the ratio of the scattered signal's power to the direct signal, 

given in the plot. Notice that for values of 201og(a) < -38 dB that detection with a 

reasonable value for Pf is unlikely for the given values of M, N, and S. A good question 

to ask is how does changing M, N, or S affect the probability of detection. First, we 

notice that changing N or S does not change the density of H0, however, changing M 

increases the mean and variance of the %\M which is the density of H0. The effect of 

increasing the values N and S for the noncentral chi-square can be seen 
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Figure 4.23: Pd vs. Pf for the White Gaussian Signal with M = 8, N = 64, S = 250, and 
201og(cc). 

to directly increase the noncentrality parameter X = 2a2NMS. Notice that the sampling 

frequency, fs, divided by NS gives the frequency resolution of the ambiguity function. If 

we keep the same frequency resolution, then any changes of N or S which are governed 

by the equation NS = fs will not change the probability of detection. Now the length of 

the time series from which we generate the ambiguity function is NMS. This means for a 

constant time-bandwidth product the only interesting tradeoff to investigate is between N 

or S and M. It is obvious that since the time-bandwidth product is constant that it is ideal 

to pick M as small as possible because this will decrease the variance of the clutter. 

Figure 4.24 shows this for As = 128,000, and Pf = 10"6. 

Next, we determine the performance characteristics for the threshold 

described by the second equation of 4.29. Notice that it requires a two sided threshold. 

However, because of the symmetry of the gaussian random variable we only consider the 

one sided case of the target being located at a negative frequency. This test requires that 
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Figure 4.24: Plot of Pd vs. a for constant Pf = 106 and As = 128,000.  M is indicated on 
the plot. 

M>2 because of the approximation of the chi density by a Gaussian. However, it is 

useful for two reasons. First, the Gaussian probability density is simple to work with 

especially in determining the Pf. Second, section 4.1.2 showed that the actual FM radio 

data appeared to be more accurately characterized by a Gaussian density if the 

frequencies were subtracted. Figure 4.25 shows the same plot as figure 4.22 except the 

densities are now Gaussians with means and variances described by equations 4.26 and 

4.29. It is useful to determine a formula which can be used to determine the minimum 

detectable scattered signal as a function of Pf, Pd M, N, and S. This task can be 

accomplished by considering the two Gaussian densities. First we set the false alarm rate 

by setting the threshold level at a multiple of the standard deviation of the density that 

corresponds to no target present. Next, we set the minimum probability of detection by 

subtracting a multiple of the standard deviation from the mean of the distribution 

corresponding to the target. We then 
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Figure 4.25: Pd vs. Pr for the White Gaussian Signal with M = 8, N = 64, S = 250, and 
20log(a). 

equate the results. This results in: 

H-n&=ka (4.33) 

where [i and a' are given by equation 4.31 and a is approximated as one from equation 

4.30. We can then substitute these values into 4.33 which gives the following result: 

(4.34) X = 1 + 3.464nVM + 2.828&VM + \5n  + 2A49nk + k2 

However, we may rewrite X = 2a2NMS = 2a2As. This means we can now solve for the 

minimum scattering amplitude that is detectable as: 

2       1 + 3.464nVM + 2.828fc VM + \5n2 + 2A49nk + k2 

M>2 
2A, 

(4.35) 

The probability of detection is given by Pd = erf(x)+0.5 and the probability of false alarm 

is given by Pf = 0.5 - erf(k) where we are using the definition [10]: 
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1    V       - v 
erf(x) = -F== Jexp(—-—)dy 

In i    ^2 
(4.36) 

The following table shows how the minimum detectable scattering amplitude decreases 

as the observation time increases for a single target: 

Table 4.4: Minimum detectable scattering amplitude for WG sampled at 250 kHz 

T (seconds) M Pd Pf 
201og(amJ O^     mm' 

0.5 8 0.841 10"6 -34.71 

0.5 4 0.841 106 -35.50 

1 16 0.841 10"6 -36.808 

1 4 0.841 10"6 -38.51 

2 32 0.841 10"6 -38.79 

2 4 0.841 10"6 -41.52 

4 64 0.841 106 -40.66 

4 4 0.841 10"6 -43.742 

8 4 0.841 106 -46.75 

16 4 0.841 10"6 -50.6 

Notice doubling the observation time T doubles the sensitivity of the radar because it 

doubles the time-bandwidth product when no change in the number of incoherent 

averages occurs. This is what we would expect because this doubles the energy of the 

scattered signal while the increase in NS appropriately scales the clutter power to keep its 

contribution constant. This table also indicates that even at a bandwidth of 250 kHz that 

the time length of the series must extremely long in order for the SDRs of -60 dB to be 

detected. 
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4.3 ADJUSTMENTS FOR THE FM WAVEFORM 

The previous section discussed the ideal operating characteristics for a 

radar with a white Gaussian signal with no clutter besides itself and a single scattered 

signal. Unfortunately, this is not an ideal world and neither the signal of interest, FM 

broadcasts, is not a white Gaussian process and of course there are buildings, cars, and 

the earth all of which introduce clutter into the detection problem. Finally, there are 

receiver noise sources which will also increase the variance of the clutter floor. In this 

section we discuss how the non-ideal world effects our calculations and we propose a 

crude phenomenological correction to our equations which should allow order of 

magnitude estimates to be made. 

The non-ideal factors of the FM broadcast can be broken into three 

categories: 

1) The FM broadcast is not White Gaussian noise. However, the Central 
Limit Theorem can still be applied because over time intervals longer 
than approximately 20 microseconds the data is uncorrelated. The 
difference is that the calculation of the variance must be modified to 
account for correlation. This can also be viewed as bandwidth 
inefficiency. If the broadcast were sampled at a slower rate of 30 kHz, 
then it would be much closer to being a white process. 

2) The FM broadcast is not just the direct broadcast but also includes 
scatter from the earth, buildings, and cars as well as the airplane we are 
interested in. This scatter will be mostly concentrated near zero range 
so it should not introduce much bias. However, it will increase the 
overall variance of the process. 

3) The target of interest is an aircraft and in general is moving (possibly 
accelerating). This means the scattering amplitude is best modeled as 
a Rayleigh random variable with uniformly distributed phase [8]. 

First, we examine the increase in variance due to using a signal with nonzero correlation 

for lags other than zero. It can easily be shown that the variance of the sum of two 

random variables which are correlated can be given as: 
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E{(x + y)2} = E{x2} + 2E{xy} + E{y2} = 
i , (4.37) 

a] + 2r<rxery +<ry= 2a2 (1 + r) 

where r, the correlation coefficient, can be inferred from 4.37 and is between 0 and 1. The 

correlation this introduces can be represented as follows: 

,     2a4N IN MS IN    4 

°^-ltis- + r=Mi<7 + Wr)=MS°' (438) 

where a4 is the rescaled value of the semivariance of the signal. Notice that this can also 

be expanded to include the increase in variance due to physical clutter such as buildings, 

cars, ect. This does not change the value of Q. that is generated by equation 4.25. This 

means that these two effects can be accounted for by adjusting the noncentrality 

parameter as follows: 

A = Q/ a4 = 2a2As(cr4 /a4) = 2a2Asß (4.39) 

where ß is the ratio of the true transmitted signal's variance, cr,2, to the rescaled variance 

given by 4.38. We suggest here that it is best to empirically determine ß from repeated 

observations of radio broadcasts. We can do this in two parts. First, we approximate the 

increase in the semivariance caused by the clutter. This can be done by using a 

directional antenna or adaptive beamforming to isolate the scattered signals. Then the 

semivariance due to physical clutter only can be estimated. This can then be added to the 

direct signal's variance to give a in equation 4.38. Another way is to use a worst case 

scenario estimate for the physical clutter. 

Now we can estimate the ratio ß = — = ß{\ + %)1  where L, represents the 

ratio of the physical clutter to the broadcast signal's variance. Next we use the linearity 

of the expectation operator to determine ß. We do this by first estimating a" from either 
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the real or imaginary component of the complex data. Then we use this estimate to scale 

the ambiguity function by equation 4.16. Here it is now possible to estimate ß either 

from the mean of the chi-square distribution or from the variance of the Gaussian density 

which is empirically generated from the clutter floor. This means we have: 

ß = XlM 

2M      2(2M-/4) ß" 
ß 

(i+^y 
(4.40) 

The following table lists the estimates for ß of signals Al - A6 for As= 128,000 and M 

8. 

Table 4.5: List of /?, the bandwidth inefficiency factor, for signals A1-A6 

Signal B 
Al 0.12 
A2 0.16 
A3 0.07 
A4 0.12 
A5 0.23 
A6 0.22 
Average 0.15 

This suggests ß is probably close to 0.15 and that if we take a conservative value of ^ = 

0.5 this shows that ß is close to 0.067. It is interesting to note that the ratio of the true 

bandwidth occupied by the signal, 30 kHz, to the sampling frequency, 250 kHz, is 0.12. 

This seems to indicate that ß is a parameter which determines bandwidth inefficiency. 

This value can now be used to estimate the corrected value of the noncentrality 

parameter. No change occurs to the chi-square and chi densities of the clutter. Figure 

4.26 shows the Pd vs. Pf for the same case as 4.24 except the noncentrality parameter is 

corrected for the value of ß=0.067. 
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Figure 4.26: Pd vs. Pf for T = 0.5 seconds and M = 8 with ß=0.067. 

The correction to X means that equation 4.35 is: 

M>2 <in = 
1 + 3.464nVÄ7 + 2.828fr VM + 1.5w2 + 2.449nfc + k2 

2\sß 
(4.41) 

The results for ß=0.067 appear in table 4.6 on the following page. From this table, it 

appears that it would be possible to detect a target whose power relative to the direct 

signal is -38.8 dB. However, we must recall that the aircraft will move over 4 km during 

this time period and could change its velocity by 157 m/s if its limited to a one g 

maneuver. This means table 4.6 and equation 4.41 should still only be taken as lower 

bounds for the minimum detectable scattered signal. 
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Table 4.6: Minimum detectable scattering amplitude for FM signal sampled @ 250 kHz 

T (seconds) M P. P< 201oefa„J 
0.5 8 0.841 10"6 -23.0 

0.5 4 0.841 10"6 -23.8 

1 16 0.841 106 -25.1 

1 4 0.841 106 -26.8 

2 32 0.841 10"6 -27.1 

2 4 0.841 10"6 -29.8 

4 64 0.841 10"6 -28.9 

4 4 0.841 106 -32.8 

8 4 0.841 10"6 -35.8 

16 4 0.841 10"6 -38.8 

However, there exist multi-threshold tracking algorithms that could possibly be used to 

approach this lower bound. Also, for short time periods table 4.6 should be close to the 

real situation because most aircraft are limited in velocity and acceleration. 

Figure 4.27 is a plot of the minimum detectable signal for the white 

gaussian signal where the plot is IX(r,-f)l-IX(r,f)l with a target located at 21 km and -125 

Hz (a fourier frequency). The length of the time series was 0.512 s with Pf = 10"5 and Pd = 

0.5. Figure 4.28 is the plot of IX(r,f)l2 for the same signal which shows that is important 

to have the statistics in mind when making judgments about detectability. Figure 4.29 is 

the plot of signal A3 with an computer generated scattered signal injected at the level of 

minimum detectability, Pd = 0.645 and Pd = 105 where we have taken ß=0.15. Figure 

4.30 is signal A3 with a scattered signal whose SDR, a2, is 3 dB below the signal injected 

to make figure 4.27. 
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Figure 4.27: Plot of IX(r,-f)l-IX(r,f)l for As = 128,000, M=8, Pf = 10'\ and Pd = 0.5 for a 
white gaussian signal with target at 21 km and -125 Hz. 
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Figure 4.28: Plot of IX(r,f)l2 for As = 128,000, M=8, Pf = 105, and Pd = 0.5 for a white 
gaussian signal with target at 21 km and -125 Hz. 
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Figure 4.29: Plot of IX(r,-f)l-IX(r,f)l for As = 128,000, M=8, Pf = 105, ß=0.15 and Pd 

0.645 for signal A2 with target at 21 km and -125 Hz. 
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Figure 4.30: Same as figure 4.29 except a was decreased by 3 dB. 



CHAPTER 5: ADAPTIVE BEAMFORMING/DIRECTIONAL ANTENNAS 

The last chapter discussed the limitations of the monostatic FM radar with 

one receiver. It is obvious that isolating the scattered signal from the direct broadcast 

signal should improve the sensitivity of the radar. Indeed, this is the impetus for using 

the Cascade Mountains as a barrier to shield the receiver at Manastash Ridge from the 

direct FM broadcast. However, it is possible to eliminate through spatial isolation the 

direct signal without having to use two receivers which are physically separated by a 

barrier. This can be done either through using antennas with directional gains or a 

number of omnidirectional dipoles whose signals are phase shifted and then summed. In 

the case of dipoles, the phase shifting can adapt over time to provide a time-varying 

optimal response to the radio environment. Hence, the name adaptive beamforming. 

However, this differs from the use of a physical barrier because a physical barrier will 

also attenuate random scatter of the direct signal by buildings, cars, and the earth. The 

question of interest is how does physical clutter limit a directional antenna/adaptive 

beamforming monostatic FM radar. We will limit our discussion to adaptive 

beamforming because limited experimental data was available to explore this option. 

Also, the results of using directional antennas should be quite similar. 

5.1 SYSTEM OVERVIEW 

The basic idea of adaptive beamforming can be seen in figure 5.1. An 

array of more than one antenna is arranged in linear fashion which causes the phase shift 

of the incident radiation between antennas to be given by <()=kdsin(9), the electrical angle 

[13]. It is also possible to use two dimensional arrays which would of course allow 

cancellation of interference in two dimensions. We assume that the direction of the 

interference is unknown, but is stationary over the convergence time of the adaptation 
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algorithm. Also, it is assumed that variance (power) of the interference is greater than the 

signal(s) of 

Figure 5.1: Geometry of adaptive beamforming array 

interest. This means that if we let the signal vector be defined as x(t) = [x,(t) x2(t), ... , 

xnl(t)]
T then we should be able to attenuate the interference by minimizing the variance of 

e(t) = x0(t)-w
H(t)x(t) (5.1) 

where wT(t) = [w,(t), w2(t), ... , wn ,(t)] is a set of weights which can slowly vary in time, 

x0(t) is viewed as the desired response, and e(t) can be viewed as the error signal. 

Traditional adaptive beamforming also places a constraint on the weight vectors to 

preserve a unity gain in a predetermined look direction. However, this also requires a 

minimum of three receivers to implement. Hence, we will concern ourselves only with 

minimizing modulus square of e(t). 

In general, there are two traditional  approaches of approaching the 

minimization problem.   The first is to view the squared error le(t)l2 as a multivariate 
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function of the adaptive filter's weights. The instantaneous gradient can be formed which 

is then used to update the filter weights so that they follow the path of steepest descent. 

This is the reason the oldest version of the algorithm is called the method of steepest 

descent [13]. We will use a more widely used algorithm which is recursive and is easy to 

use called the least mean squares algorithm (LMS). The second general approach to this 

problem is to recognize that this problem is the same as a linear least squares problem. 

This can be implemented using algorithms such as recursive least squares, QR- 

decomposition, ect [13]. However, these algorithms are more computationally complex 

and are harder to implement than LMS.. The reason the recursive least squares and QR- 

decomposition algorithms exist is because they offer better convergence, but it was found 

the normalized LMS algorithm (a close variant to LMS) was sufficiently convergent for 

this problem. For these reasons, and because the experimental data that will be used only 

comes from two antennas we chose only to examine the LMS algorithm and its close 

relative the normalized LMS algorithm 

The complete derivation of the complex LMS  algorithm is given in 

Haykin where it is shown that it results in three basic steps [13]: 

1) Filter output: g(t) = w"(t)x(t) 

2) Estimation error: e(t) = x0(t) - g(t) 

3) Tap-weight adaptation: w(f +1) = w(/) + /jx(t)e*(t) 

This is simple to program especially in the case of two antennas because in that case the 

vectors reduce to scalars. The quantity p is the step-size parameter, and determines the 

convergence properties of the LMS algorithm. Picking a value of p which is to large will 

cause the algorithm to diverge and picking a value which is to small will make the 

adaptation time to long to be useful. It was found through trial and error that using this 

form of the algorithm on the set of radio broadcasts that were sampled did not yield 

useful  convergence  properties.     However,  if we  modify  the  LMS   algorithm by 
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normalizing the step-size parameter by the squared magnitude of the data vector, x(t), 

then the algorithm satisfactorily converged. Thus, the normalized least mean squares 

algorithm that was actually implemented in the following analysis modifies step 3 by 

[13]: 

3)   w(f + l) = w(f) + - £ x(')e*(0 
|x(0||  +k 

where Ji is the normalized step size and k is constant which insures that the denominator 

cannot become to close to zero. The values of Ji and k that were used were 1 and 100, 

respectively. 

In contrast to most adaptive filtering problems, the result that we want is 

not the filter output. Instead it is the error sequence that is of interest. The filter adjusts 

its tap weights so that its output closely models the main components of x0(t) which 

should be the direct signal and any strong clutter sources. Subtracting the two should 

leave scattered signals which arrived from different directions than the direct signal. This 

is of course the error sequence of equation 5.1, and is where we will start the analysis of 

how adaptive beamforming will affect the sensitivity of the FM radar. 

5.2 ANALYSIS OF ADAPTIVE BEAMFORMING EFFECTS ON SENSITIVITY 

To analyze the effects that adaptive beamforming has on the sensitivity of 

the FM radar system we limit ourselves to the simple case of two receivers. We do this 

because the direct signal is the major source of "interference" in this problem and because 

it should be easy to generalize from this example to more than two receivers. Also, the 

currently available experimental data was for only two receivers. 

First, we write the two signals without including the noise terms because 

we will assume the clutter, direct, and scattered signal are all much greater than the noise. 

From chapter 2, we have: 
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x0(t) = u(t)+ \®,{r,t)u{t-r)dr 
R" (5.2) 

CO 

JC, (0 = e'*u(t) + Ja>2 (r,t)u(t - r)dr 

where § is the electrical angle, and 0,(t,r) and ®2(t,r) are the scattering amplitudes of the 

clutter and targets which are different because of the phase shift which is presumed 

unknown but different from the direct signal. If u(t) is significantly larger than the 

clutter, then we can assume the single spatial weight should converge to approximately e' 
j*, but there will be some error, 8. This means the resulting error term e(t) which now we 

will call y(t) is given as: 

CO 

y(t) = £u(t)+ \u{t-r)[<&x(r,t)-e-j*<&2(r,t)]dr (5.3) 

Next, we form the product y(t)x*(t-r0) as is done in the previous chapter's analysis. This 

results in: 

CO 

y{t)x*(t - r0) = su{t)u (t - r0) + e ]"$*(r'-r0,t)u(t)u (t - r'-r0)dr'+ 

CO 

lu(t-r0)u(t-r)[O1(r,t)-e-j^2(r,t)]dr+ (5.4) 

co   CO 

lluit-rWit-r'-rJO'^r'-r^t^iir^-e-^irjyjdr 

This can now be compared to the sequence a(t) as defined in the previous chapter. Notice 

that if we assume lei«!, then the dominant terms in the sequence are: 
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y(t)x\t-r0)« \u\t-r0)u{t-r){<i>l{r,t)-e-]*<S>2{r,t)\ir + 

<X>    CO 

l\u(t-r)u\t-r'-r0)<!>\(r'-r0M®ArJ)-e-J'<!>2(r,t)yr 
Ki Ki 

This obviously shows that the clutter contribution due to the direct signal with itself is 

dramatically reduced if 8 is small. Instead, now the important contribution to the variance 

of the probability distributions is the physical clutter. This shows that in the case of near 

ideal adaptive beamforming that the FM radar will be limited by the physical clutter in 

the environment. Also, since the target(s) of interest is implicitly included in the 

scattering amplitude, we see that another effect is that it can reduce the scattering 

amplitude of the target of interest by: 

a{\-em~9)) = Ka (5.5) 

where <|>T is the electrical angle of the target of interest and <j) is the electrical angle 

corresponding to the direct broadcast. The value of K can be between 0 and 2. This also 

occurs for any physical clutter in the problem and shows that adaptive beamforming 

could actually increase the contribution to the variance by some of the physical clutter. 

Now we use the factor £, from before to represent the ratio of the physical clutter to the 

broadcast signal's power as given by: 

(5.6) 
£=std[Re{y(t)x*(t-r0)}]/y[2cj? 

V2öf = std[Re{x(t)x* (t - r0)}] 

then we may write the variance of the unnormalized chi-square as: 

,     2|V> 2^<7,1W MSy 2fa!N a'=-ür+r=^riUTpvt)=nw~       (5J) 

Then we can rewrite the noncentrality parameter as: 
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Ä = Q/aj=2K2a2Tß/^ (5.8) 

where K is the loss factor due to the distortion of the beam in the direction of the target, £, 

is the gain due to cancellation of the direct signal, and ß is the loss factor as defined 

before. This means we can rewrite equation 4.46 for the case of adaptive beamforming 

as: 

1 + 3.464«VM + 2.828Ä: VM + 1.5«2 + 2A49nk + k2   ~ 
M>2 «i. = ^ r (5-9) 

Notice that if £/K < 1 for most electrical angles then adaptive beamforming should be 

useful barring a dramatic change in ß. 

5.3 EXPERIMENTAL RESULTS 

The previous section showed that the key to understanding the 

improvement offered by adaptive beamforming or directional antennas is the 

characterization of the typical physical clutter. The best way to do this is simply to turn 

on the receivers and make measurements of the clutter environment using adaptive 

beamforming. It should then be possible to estimate £,. 

Estimating 2; requires that we first find the standard deviation of the direct 

signal plus the physical clutter and then use adaptive beamforming to estimate the 

standard deviation of the physical clutter only. This results in the following estimate: 

V1      ?/°direct   _      scatt+direct   _ i    >^   P * /c Q\ 

5°direct ^"tt k ~ l 

where adirecl is the standard deviation of the u(t)u*(t-r0) where u(t) is the direct signal. 
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Only one set of data was available to determine whether adaptive 

beamforming improves the sensitivity of the radar. The results were encouraging. The 

data is signal A2 and a new data set B2 which was synchronously sampled by a different 

receiver. The baseline was 1.5 meters. After the data was passed through the adaptive 

beamforming algorithm the standard deviation of the real and imaginary parts were 

computed. It was found that they were both approximately 10. In contrast, signal A 

which was used as the reference signal had a standard deviation that for both in-phase and 

quadrature was 30. This gives a ratio of 1/3. This meant that 2; should be 1/9. However, 

a calculation of £, for r0 = 21 km showed that it remained about 1/3. This indicates that 

the contribution of the physical clutter to the standard deviation is more than is predicted 

and probably occurs because of more correlation due to physical clutter. 

However, \ being close to 1/3 shows that some improvement is possible. 

Notice that this means it could improve the sensitivity by a factor of 1/9 which is about 

9.5 dB. To test this we injected the same target into both A2 and B2 that was used in 

figure 4.28. Figure 5.1 shows that it is plainly distinguishable. Figure 5.2 shows a target 

3.3 dB below the one used in figure 5.1. Notice it is still visible. This seems to indicate 

at least a 6 dB gain in this case. It was also known that the signals used were quite noisy. 

With better receivers it may be possible to improve the gain of the adaptive beamforming 

system. 
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Figure 5.2: Plot of IX(r,-f)l - IX(r,f)l for the cross ambiguity plot of the adaptive 
beamformed signal with A2. As =128,000, M = 8, and the amplitude level the same as 
4.30. 
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Figure 5.3: Plot of IX(r,-f)l - IX(r,f)l with the same parameters as figure 5.2 except the 
scattering amplitude is 3.3 dB less. 



CHAPTER 6: RESULTS AND CONCLUSION 

Throughout this thesis we have been exploring the sensitivity of the 

monostatic FM radar. The key issue in determining the sensitivity is the ratio of the 

scattered signal to the direct signal. The introduction shows that to be useful the bistatic 

system must be able to detect signals whose SDR are less than -54 dB. Unfortunately, 

because the bandwidth of the FM broadcasts is insufficient it is probably not possible to 

us FM radio broadcasts to detect aircraft. However, if control of the transmitting 

waveform is possible then a white Gaussian noise signal with sufficient bandwidth should 

be possible. 

6.1 WHITE GAUSSIAN SIGNAL RADAR NETWORKS 

Equation 4.35 which determines the minimum SDR shows the strong 

dependence of sensitivity on bandwidth. Throughout the thesis we have constrained 

ourselves to processes with bandwidths on the order of 250 kHz. Notice that if the 

bandwidth is increased to 10-20 Mhz, the radar now becomes sensitive to targets with 

SDRs in the range of -60 dB. Because of the wide bandwidth of these signals, it is 

probably desirable to move the carrier frequency into the 3 - 10 Ghz range so that the 

narrowband scattering approximation still applies. However, it obvious there are two 

problems that are encountered with the practical implementation of the above system. 

The first is the increase of noise power with bandwidth, and the second is the increase in 

computational burden as the bandwidth increases. 

First, we examine the increase of noise power with bandwidth. If we 

increase the carrier frequency to 3 - 10 Ghz, then the noise floor can be approximated by 

the cosmic background radiation if we use good receiver design [14]. This means that 

equation 1.4 can be use to approximate the noise floor with T being approximately 5 K. 

This means that with a 10 Mhz system that the total noise power is only 6.9xl0"16 Watts 
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which is still far below the signal power at distances of interest. In fact, increasing 

bandwidth will result in gain versus noise because from equation 4.46 the increase in gain 

is linear with a slope of approximately one. In contrast, the noise power increases 

linearly with bandwidth but with a slope of N0 = 6.9x1023W/Hz. The way to think about 

what is occurring is to realize that by increasing the bandwidth of the signal its power is 

being spread in frequency because we are forcing it to be white. However, the scattered 

signal's energy still remains the same. From this it follows that as the bandwidth is 

increased the system will eventually reach the point of being the noise limited matched 

filter output with SNR given by: 

2E 

Where Es is the energy content of the scattered signal for the integration time. Notice that 

N0 is not dependent on bandwidth, and therefore determines the ultimate sensitivity of the 

radar system for a fixed transmitter power. 

The second problem is the issue of computation of the ambiguity function 

for bandwidths of 10 - 20 Mhz. The computation requirement of the ambiguity function 

can basically be broken down into two steps. First, we perform coherent integration to 

reduce the bandwidth of the signal. The bandwidth of the targets of interest depend on the 

carrier frequency and the maximum radial velocity they obtain. For man-made objects, 

we can take the maximum radial velocity as about 1000 m/s. This means that at a carrier 

frequency of 3 Ghz we can expect a maximum doppler shift of 63 kHz. This means our 

complex sampling frequency should be 63 kHz. Hence, if we are operating with a 

bandwidth of 224 « 16.78 Mhz then we can decimate by a factor of D = 256. We must do 

that for each range of interest with 225 ranges required if we wish to use the maximum 

range resolution for 0 to 4 km. Following this, each range must be fourier transformed to 

give the frequency spectrum of the scattering amplitudes. This means it requires 4.01 x 

109 complex multiplies per second which since each complex multiply requires four real 



multiplications translates into 16xl09 real multiplications. The general expression for 

algorithms with fB/D = T where n is an integer is given for multiplications as: 

/,«(> +^f^) (6-2) 

where R is the number of ranges to examine. Notice that the decimation step, fBR, 

dominates if D is even moderately large. Thus, although the operations count is at first 

apparently daunting it should be possible because of the simplicity of the decimation step 

to effectively implement the algorithm in most cases. 

6.2 CONCLUSION 

The investigation of the possibility of using FM radio broadcasts in a 

monostatic version of the radar was shown to be ineffective primarily because the 

bandwidth of the FM broadcast was not wide enough to give sufficient signal processing 

gain to detect point targets such as aircraft. However, the results of the investigation have 

shown that monostatic radars which use wide bandwidth white gaussian signals approach 

the maximum SNR available from a signal processed by a matched filter in the 

background of the cosmic noise floor. This shows promise in developing passive radar 

networks and even passive radars which would be capable of operating without detection. 

It has also been shown how to determine the probability density functions of the 

ambiguity function which is used to detect targets. This is important because it allows 

the performance of the radar to be determined as a function of the false alarm probability 

and detection probabilities. 

As with any complex problem, there is still much that remains to be 

explored. The power of the physical clutter relative to the direct signal has not been 

adequately estimated. The geographic location of the transmitters and receivers with 

relation to the target of interest can also have a profound effect on the radar's 

performance.   An analytical model of the effect of the noise being colored instead of 

1 
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white could also give much insight. Finally, an actual experiment using wide-bandwidth 

white gaussian signals could be conducted. 

i 
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